
Biomedical Signal Processing and Control 65 (2021) 102366

Available online 7 December 2020
1746-8094/© 2020 Elsevier Ltd. All rights reserved.

A deep learning model using data augmentation for detection of 
architectural distortion in whole and patches of images 

Olaide N. Oyelade *, Absalom E. Ezugwu 
School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, KwaZulu- 
Natal, 3201, South Africa   

A R T I C L E  I N F O   

Keywords: 
Architectural distortion 
Breast cancer 
Convolutional neural network (CNN) 
Data augmentation 
Deep learning 
Mammography 

A B S T R A C T   

Breast cancer is now widely known to be the second most lethal disease among women. Computer-aided 
detection (CAD) systems, deep learning (DL) in particular, have continued to provide significant computa-
tional solution in early detection and diagnosis of this disease. Research efforts are advancing novel approaches 
to improve the performance of DL-based models. Techniques such as data augmentation, varying depth of model, 
image quality enhancement, and choice of classifier have been proposed to improve performance in the char-
acterization of abnormalities in mammograms. However, no significant progress has been made in applying deep 
learning techniques to the detection of architectural distortion – a form of abnormalities in breast images. In this 
research, we propose a novel convolution neural network (CNN) model for the detection of architectural 
distortion by enhancing its performance using data augmentation technique. We also investigate the performance 
of the proposed model on different operations of image augmentation. Furthermore, the new model was adapted 
to detect images presenting the right and left breast presented in MLO and CC views. Similarly, we investigate the 
performance of our model under the fixed-size region of interests (ROIs) and multi-size whole images inputs. Our 
method was trained on 5136 ROIs from MIAS, 410 whole images from INbreast, 322 whole images from MIAS, 
and 55,890 ROIs from DDSM + CBS databases. Performance evaluation of the proposed model in comparison 
with other state-of-the-art techniques revealed that the model achieved 93.75 % accuracy. This study has, 
therefore, strengthened the need to leverage data augmentation techniques to enhance the detection of archi-
tectural distortion, thereby reducing the rate of advanced cases of breast cancer.   

1. Introduction 

Cancer is the uncontrolled growth and spread of cells. Breast cancer 
is a type of cancer that has risen to be the second cause of death among 
women. A fundamental characteristic of all forms of cancer is that the 
earlier they are detected and attended to, the easier they are able to be 
cured. This is because the growth rate of the affected cells can be 
exponential [1]. The Cancer Health Center (CHC) noted that most cases 
of cancer are detected and diagnosed after a tumor can be felt or when 
other symptoms have developed [2]. Breast cancer has the second 
highest mortality rate in women next to lung cancer and is the most 
common type of cancer in 140 countries of a total of 182 evaluated 
nations [3]. The US prediction on breast cancer towards 2019 revealed 
that about 268,600 new cases of invasive breast cancer would be diag-
nosed, 62,930 new cases of carcinoma in situ will be diagnosed, and 41, 
760 women will die from breast cancer [4]. Although these figures may 

appear to mirror what is obtainable in most developed economies, 
research has also shown that almost 50 % of breast cancer cases and 58 
% of deaths occur in less developed countries. The low survival rates can 
be explained mainly by the lack of early detection of the disease with 
over 33 % and 81 % of the population in ages 30–49 years, and 30–59 
years, respectively [5–7]. Recently, the American Cancer Society esti-
mated that in 2019 [78], 30 % (14,460) of women diagnosed of ductal 
carcinoma in situ (DCIS), a type of breast cancer, were in the age gap of 
60–69; 28 % (74,820) of those in that same age group progress to have 
the invasive cancer (an advanced stage of breast cancer); and 24 % 
(9920) eventually died. In a separate report, US alone was reported to 
have 1,806,590 new cancer cases and 606,520 cancer deaths were 
projected for the year 2020 [79], while [80] showed that the estimated 
rate of new cases is 128.5 per 100,000 and death rate is 20.1 per 100,000 
women per year. 

The challenge of early detection of breast cancer has promoted 
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research in computer-aided detection (CAD) systems. The high impact of 
CAD has increased the number of cancers detected by 19.5 %, increased 
early-stage malignancies detected from 73 % to 78 %, achieved a recall 
rate of 7.7 %, and detected 50 % of the cases of architectural distortion 
missed by human experts [8]. Although different approaches like 
rule-based systems, logic and prolog are some traditional CAD systems 
adopted for this purpose, however, some of these systems have not been 
successful at limiting the number of false diagnoses. This has, therefore, 
advanced research in the area of deep learning, particularly convolu-
tional neural network (CNN) in drastically limiting false diagnosis, false 
positive rates and increased early detection. CNN and deep learning 
techniques generally are a type of CAD systems which are based on 
recognition of patterns while processing images to extract certain set(s) 
of features. We have directed the focus of this research at the use of deep 
learning methods for mammograms. This will help us detect if it is of 
malignant or benign or normal case based on the digital image. We 
exploit the presence of architectural distortion (AD) in mammography to 
carry out this differential task. This is necessitated due to the fact that 
12–45 % of cancers missed in mammographic screening are AD [3]. 
Note that malignant cells are cancerous cells which start from abnormal 
cell growth and might spread rapidly or invade nearby tissue while 
benign cases are considered as noncancerous, these can be easily 
removed from the body [9]. 

Mammography is a type of medical imaging used for screening and 
diagnosis of breast cancer. It is the most useful and common tool 
employed by the radiologist when looking out for speculated masses, 
microcalcifications, bilateral asymmetry and architectural distortion [3, 
10]. This implies that making findings from it largely depends on experts 
– the radiologists. However, screening carried out using this tool is 
highly characterized with false positive results, over-diagnosis of 
insufficient lesions, different interpretations of screening results, unre-
liable/low accuracy of detection and diagnosis, increasing need for 
carrying out additional examinations, and limitation of the radiologist 
who makes the findings, thereby leading to patient anxiety [11,12]. 
These notwithstanding, mammography has made significant contribu-
tions towards the early detection of breast cancer, even the detection of 
something as subtle as architectural distortion [10,13,14]. On the other 
hand, the technique of biopsy is another method applied to confirm the 
presence of breast cancer [81]. The study in [82] attempted to apply the 
combination of K-means, fuzzy C-means, competitive learning neural 
networks and Gaussian mixture models as clustering techniques in 
detection of breast cancer based on biopsy images. Architectural 
distortion is the alteration of the architecture of a normal breast. The 
presence of architectural distortion does not necessarily mean that it 
must present with mass or calcification. But this distortion in breast 
architecture usually manifests in mammographic finding as speculations 
radiating from a point, focal retraction, and straightening at the edges of 
the parenchyma [15,16]. Architectural distortion, due to its subtle na-
ture and low prevalence, is, however, frequently discovered in retro-
spective assessments of false-negative mammography and may 
represent the earliest manifestation of breast cancer. 

Deep learning models have demonstrated great results by improving 
the state-of-the-art in identifying subtle abnormalities like architectural 
distortion [69,70]. The application of deep learning technique has 
proven that using classical methods such as Grey Level Co-occurrence 
Matrix (GLCM) [83], multi-resolution wavelet [84], Gabor Filter 
[85–89], pattern recognition [90] for feature selection and classification 
in characterization of abnormalities in breast images are ineffective and 
deficient [91]. Hence the adoption of the use of deep learning models 
which are based on the deep arrangement of layers which are able to 
extract features in images (and other forms of data) with multiple levels 
of abstraction [17]. CNN, which is a type of deep learning model, is used 
in detecting architectural distortion in digital mammography, in addi-
tion to localization of regions of interest (ROIs), classification of find-
ings, image retrieval, and risk assessment. The layers which often stack 
up to build a CNN model are convolutional layer, pooling layer and fully 

connected (fc) layer [18]. Variation of hyperparameters (depth of model 
for example) in CNN has produced different CNN architectures namely: 
CiFarNet [19], AlexNet [20], GoogLeNet or Inception v1 [21], Inception 
v3 [22], Inception v4 [23], Xception [24], ResNeXt-50 [25], ResNet 
[26], VGG [27] and LeNet [28]. These novel architectures have attracted 
a wide range of acceptance and application among researchers largely 
due to their outstanding performances even in the detection of archi-
tectural distortion [29–32]. 

Generally speaking, studies have supported the need for advanced 
tools and techniques for accurate diagnosis and classification of breast 
cancer since the segmentation and classification phases are challenging 
[73,74], hence the motivation for the adoption and adaptation of deep 
learning techniques for these tasks. In addition to that, the major chal-
lenge of using CNN for detection of abnormality in mammography is 
limited data which usually lead to high false positive rates, a poorly 
trained CNN model that does not generalize and results in overfitting 
[33–35]. Secondly, another related challenge which may lead to high 
false positive rate is associated with low contrast in the datasets of 
mammogram images available for use in CNN models [36]. This calls for 
the furtherance of research to advance CNN beyond the limitations of 
radiologists and traditional CAD systems which are duped into having 
sensitivity ranging from 62 to 87 % and specificity from 75 to 91 % for 
human experts [37], and sensitivity of 50 % with the number of false 
positives per image equal to 1.0 for traditional CADs [35]. Thirdly, there 
are few research efforts geared towards the detection of architectural 
distortions in digital mammograms, and these are often missed or 
difficult to detect when screening mammograms [32,43]. The fourth 
research opportunity aimed at improving deep learning models for 
detection of ADs remains variation in sizes of ROIs. Although the first 
problem has been partly addressed by using transfer learning (TL) and 
data augmentation techniques, these solutions are yet to sufficiently 
harness for a significant reduction of false positive rates of detection 
[38] and improved detection of AD. Whereas some literature has argued 
in favor of the use of both the ground truth-size-based ROIs and 
fixed-sized ROIs, others have attempted to adapt CNN models to whole 
mammography images. These input size variations are still a hot topic of 
research. 

The effectiveness of mammography as a tool for screening and 
diagnosing breast cancer is still relevant [39]. Furthermore, it is also 
well observed that deep learning models are capable of yielding un-
precedented performance on some tasks, given sufficient data [40,35]. 
In addition to this, the standard and synthetic approaches for data 
augmentation have produced significant performance in curtailing 
overfitting. Although techniques like dropout, batch normalization, 
batch re-normalization or layer normalization have also contributed 
immensely to tackling overfitting of deep learning models, we still argue 
that the use of the synthetic approach for data augmentation is not yet 
sufficiently exploited. 

To address the above challenges, we propose an improved compu-
tational solution to aid the accurate detection of breast cancer abnor-
mality architectural distortion. This study employed the use of data 
augmentation [41] technique in generating new synthetic dataset to 
achieve a CNN model that effectively generalizes. This research inves-
tigated the effect of combining both fixed-sized and variable-sized im-
ages into the proposed CNN model. The model was adapted to be able to 
compare images from the left and right breasts and also the craniocaudal 
(CC) and mediolateral-oblique (MLO) view of each breast. Also, we 
tweaked the model to increase the performance of our proposed CNN 
architecture by generating augmented data to increase training data. 

The main objective of this study is to design a CNN-based model for 
the detection of architectural distortion, and apply data augmentation 
technique to improve the accuracy in reducing false positive classifica-
tion of architectural distortion. The novelty of our work lies in the 
proposed CNN model designed, implemented and trained from scratch, 
the combination of datasets resulting in a good number of experimen-
tations, and the outstanding classification performance for architectural 
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distortion. Specifically, the technical contributions and novelty of the 
proposed model are hereby highlighted below:  

• Design of a novel CNN-based model for detection of architectural 
distortion. The proposed model is able to accept multi-size inputs and 
images of different views. 

• Application of a data augmentation approach based on the tradi-
tional method of flipping and rotating of images. We experimentally 
chose the best values for the required parameters (e.g. angle of 
rotation of image). 

• Enhancement of the proposed CNN model to investigate the likeli-
hood of obtaining performance improvement when whole images are 
served as input. 

It is noteworthy to mention that the new deep learning model pre-
sented in this study was able to achieve a reduction of false positive rates 
due to the detection of architectural distortion in images in digital 
mammography. Similarly, we applied the proposed model and the 
augmentation technique to a good number of benchmarked datasets to 
validate the robustness of the model. Further, to validate the efficiency 
and practicality of the proposed model, it was applied to different 
augmentation operations. This was done under different experimenta-
tion to investigate what combination of operations presents the optimal 
performance of the proposed model. Finally, a performance evaluation 
analysis reported in the later section of this paper shows that the new 
CNN-based model achieved superior accuracy when compared to similar 
existing state-of-the-art CNN models. 

The remaining part of this paper is organized in the following order: 
Section 2 is focused on reviewing related works in data augmentation 
techniques, image cropping approaches for the extraction of ROIs, and 
use of deep learning models in detecting abnormalities in mammog-
raphy. Section 3 presents the technical contributions of this paper. In 
Section 4, we report the experimentation carried out based on the pro-
posed model. Furthermore, Section 5 presents the results and discussion 
of the experimentation. Finally, we conclude this paper in Section 6. 

2. Related works 

This section presents a review of some related works that used data 
augmented techniques for training deep learning models in detecting 
abnormalities from digital mammography and other related areas. 
Characterization of defects in mammograms is usually categorized into 
four, namely: malignant mass detection, calcification detection, archi-
tectural distortion, and asymmetry of the breast. Our review revealed 
that computer aided detection systems (CADs) using deep learning 
techniques have achieved outstanding performances not only in breast 
cancer but also brain, stomach, gastrointestinal, and lung cancers. This 
claim is supported by some very interesting studies [71,72,75–77]; we, 
however, constrained our review to those of breast cancer with the hope 
of learning from their approach. Although this paper is focused on the 
characterization of the architectural distortion abnormalities in the 
breast, we shall not restrict our review to that aspect alone, but instead 
briefly present the outcome of studies in others. 

In [42], the authors approached their task of detection of architec-
tural distortion and speculated masses using Gabor filters and planes. 
Experimentation was tested on Mini-MIAS and DDSM, and they applied 
SVM and MLP classifiers for classification. Results showed that they 
achieved 90 % of sensitivity, 86 % specificity in distinguishing AD from 
the healthy breast tissue and 93 % sensitivity and 88 % specificity in 
classifying speculated mass; also, SVM classifiers achieved 96 % sensi-
tivity with 9.6 false positives per image in detection of speculated mass 
and 97 % sensitivity with 6.6 false positives per image while detecting 
architectural distortion. In related work [43], also demonstrated the 
methods for the detection of architectural distortion in prior mammo-
grams of interval-cancer cases based on analysis of the orientation of 
breast tissue patterns in mammograms. They used the oriented 

structures in a given mammogram which are analyzed using Gabor fil-
ters and phase portraits to detect node-like sites of radiating or inter-
secting tissue patterns and pattern classification via quadratic 
discriminant analysis. Results obtained achieved a sensitivity of 80 % at 
about five false positives per patient. 

Others have leveraged the benefits of R-CNN as in [44] who intro-
duced the detection of architectural distortion using a supervised 
pre-trained region-based network (R-CNN). Experimentation was based 
on DDSM dataset, and results showed that they obtained over 80 % 
sensitivity and specificity, and yielded 0.46 false-positives per image at 
83 % true-positive rate. Similarly [45], demonstrated a novel network 
which combined two learning branches with region-level classification 
and region ranking in weakly and semi-supervised settings. Their results 
for weakly supervised learning showed an improvement of 4% in AUC, 
10–17 % in partial AUC and 8–15 % in specificity, and 0.85 sensitivity. 
On the other hand [46], GlimpseNet autonomously extracts multiple 
regions of interest, classifies them, and then pools them to obtain a 
diagnosis for the full image. They obtained a result that gained 4.1 %. 

Recently, there has being a surge in the use of basic CNN models in 
the characterization of architectural distortion from mammograms. [47] 
proposed a framework using a combination of deep Convolutional 
Neural Network (CNN) models. The model is an eight layer deep 
learning network that involves three pairs of convolution-max-pooling 
layers for automatic feature extraction and a multiple layer perceptron 
(MLP) classifier for feature categorization to process ROIs. The network 
contained 20, 10, and 5 feature maps of convolution layers. The MLP 
classifier is composed of one hidden layer and one logistic regression 
layer. Results of their experimentation achieved an AUC of 
0.696 ± 0.044, 0.802 ± 0.037, 0.836 ± 0.036, and 0.822 ± 0.035 for 
fold 1–4 testing datasets, respectively, while the overall AUC of the 
entire dataset is 0.790 ± 0.019. Similarly [48], also proposed an 
in-depth feature-based framework combining intensity information for 
breast mass classification task. In related work, Bakkouri and Afdel [49] 
suggested a novel discriminative objective for supervised feature deep 
learning approach focused on the classification of tumors in mammo-
grams as malignant or benign, using SoftMax layer as a classifier. The 
proposed network was enhanced with a scaling process based on 
Gaussian pyramids for obtaining regions of interest with normalized 
size. The DDSM and BCDR dataset were used in addition to data 
augmentation (geometric transformation) technique. The result of their 
experiments showed that they obtained an accuracy of 97.28 %. 

Another deep learning model was used by [50], which was a novel 
supervised deep learning-based framework for region classification into 
semantically coherent tissues. Their work improvised data for training 
by training the CNN in an overlapping patch-wise manner and adapting 
the convolutional neural network (CNN) to learn discriminative features 
automatically. The experimental result showed that they obtained an 
average dice coefficients of 0.71. In [51] a multi-task transfer learning 
DCNN was proposed to translate knowledge from non-medical images to 
medical diagnostic tasks through supervised multi-task transfer 
learning, digitized screen-film mammograms (SFMs) and digital mam-
mograms (DMs) were used to train the DCNN, which was then tested on 
SFMs. Experimentation was done with Institutional Review Board (IRB) 
approval, SFMs and DMs were collected from our patient files, and 
additional SFMs were obtained from the Digital Database for Screening 
Mammography. The data set consisted of 2242 views with 2454 masses 
(1057 malignant, 1397 benign). 

Mammogram-based CNN based models include [52] which exploited 
the efficiency of pre-trained convolutional neural networks (CNNs) in a 
combination of pre-existing handcrafted features. These features were 
combined with low-level to mid-level features using a pre-trained CNN. 
The dynamic contrast enhanced-MRI [690 cases], full-field digital 
mammography [245 cases], and ultrasound datasets [1125 cases] were 
used for experimentation. The research obtained the following results: 
DCE-MRI [AUC = 0.89, se = 0.01], FFDM [AUC = 0.86, se = 0.01)], and 
ultrasound [AUC = 0.90, se = 0.01)]). Another use of a CNN model for 
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classification of breast mass lesions and aided with end-to-end learning 
process was proposed by [53]. 

In [54], the authors presented a novel classification technique for a 
large dataset of mammograms using deep learning: convolutional neural 
network-discrete wavelet (CNN-DW) and convolutional neural 
network-curvelet transform (CNN-CT). An augmented dataset is gener-
ated by using mammogram patches, in addition to filtering the data 
using contrast limited adaptive histogram equalization (CLAHE) while 
using SoftMax layer and support vector machine (SVM) layer as a clas-
sifier. Results showed that CNN-DW and CNN-CT had achieved an ac-
curacy rate of 81.83 % and 83.74 %, respectively. In related work, the 
authors in [55] also explored the possibility of combining the technique 
of transfer learning with GoogLeNet and AlexNet pre-trained on a 
large-scale visual database. Results of their research demonstrated that 
GoogLeNet reached an AUC of 0.88 outperforming AlexNet, which stood 
at AUC of 0.8. 

Finally, here are some other related works which adopted other 
similar techniques: [56] applied Convolution Neural Network on the 
mammogram images to enhance the accuracy rate of CAD. Performance 
of the different classifiers was measured on receiver operating charac-
teristic. Experimentation results showed that the model attained an ac-
curacy of 73 %, with 71.5 % sensitivity and 73.5 % specificity for dense 
tissue, and accuracy of 79.23 %, 73.25 % sensitivity and 74.5 % speci-
ficity was achieved for fatty tissue. Similarly [37], presented two novel 
techniques - genetic search of image enhancement methods with CLAHE 
and DCNN - to address inherent challenges in the application of machine 
learning to the domain of mammography. The research also utilized 
dual deep convolutional neural networks at different scales for classifi-
cation of full mammogram images and derivative patches combined 
with a random forest gating. The result obtained showed a specificity of 
0.91 and a specificity of 0.80. 

The study proposed in [37] was based on wavelet convolution neural 
network for the detection of speculated findings in low-contrast noisy 
mammograms, such as architectural distortions and speculated masses. 
The dataset used for experimentation consisted of CBIS-DDSM and 
reached an accuracy of over 85 % for architectural distortions and - 88 % 
for speculated masses. In [31], the authors proposed a detection scheme 
composed of two separate channels, each of them being dedicated to the 
detection of one of the target radiological signs for detection of masses 
and architectural distortions in DBT datasets. Lastly [32], employed the 
use of texture models using support vector machine (SVM) classifier for 
texture classification of architectural distortion. The databases used 
were IRMA version of a digital database for screening mammogram 
(DDSM) and Mammographic Image Analysis Society (MIAS). Results 
pertain to an accuracy of 92.94 % obtained in case of DDSM database for 
fixed-size ROIs, and for MIAS database, an accuracy of 95.34 %. Similar 
to the work in [44], the authors in [65] adapted Fast R-CNN to detect 
and classify malignant or benign lesions on a mammogram using the 
INbreast dataset. 

In [66], the authors designed a novel CNN architecture that can 
accurately detect breast cancer on screening mammograms using an 
“end-to-end” training procedure. Their model was able to detect cancer 
from incomplete annotated datasets. They required the image annota-
tion for the initial stage of the training and then allowed their model to 
fall back to image-level labels in the second stage. Using the CBIS-DDSM 
dataset, their proposed model attained an AUC of 0.88, and four-model 
averaging improved the AUC to 0.91 (sensitivity: 86.1 %, specificity: 
80.1 %). The authors also demonstrated that a whole image classifier 
trained using the proposed end-to-end approach on the dataset can be 
transferred to another dataset (INbreast) [66]. Meanwhile, in [67], the 
authors approached their study using the Shallow-Deep Convolutional 
Neural Network (SD-CNN) which relies on a shallow CNN to derive 
"virtual" recombined images from low-energy (LE) images; features are 
then extracted from the LE images using a CNN. The study revealed an 
accuracy of 0.90 using 49 contrasts enhanced digital mammography 
cases privately acquired. Similarly, they applied the proposed SD-CNN 

on 69 digital mammography cases collected from the hospital located 
at Zhejiang University, China and obtained an accuracy of 0.95. The 
application of transfer learning to the process of detection of breast 
cancer from breast density scoring was demonstrated in [68]. The au-
thors proposed a CNN model which uses Gabor filters and local binary 
pattern (LBP)] and gradient-based features [histogram of oriented gra-
dients (HOG) as well as speeded-up robust features (SURF). After that, 
the adapted transfer learning approach with ImageNet trained weights 
to obtain an AUC of 87.3 %. 

An overall perspective view of the state-of-the-art applying CNN 
models to the task of characterization of abnormalities in breast images 
revealed that most of the architectures adopted either SoftMax or SVM 
for classification. The architectural evolvement of CNN ranges among 
architectural innovation (variation of depth and width of the model, 
number of channels, spatial or temporal exploitation, input size, and 
multi-layered architecture), skillfully selecting parameter optimization 
approach, use of different activation and loss functions, application of 
regularization, regulatory units (dropouts and batch normalization), and 
data augmentation. Performance enhancement of CNN model, there-
fore, largely depends on how carefully/skillfully researchers can arrange 
these components. Most data augmentation approaches used in classi-
fication model adopt that of traditional data augmentation techniques. 
This augmented data set is generated by using patches. The data pro-
cessing technique widely used in similar studies involves data cleaning, 
feature analysis, data normalization and sampling, the addition of 
filtering, by contrast, limited adaptive histogram equalization (CLAHE), 
and data ordering. Table 1 summarizes all the pros and cons of the 
studies reviewed. Meanwhile, we observed that some studies are already 
taking advantage of the 3D tomosynthesis of breast images over the 2D 
mammograms widely used [64]. 

3. The proposed architectural distortion detection model and 
algorithm 

In this section, we present the data preprocessing and cropping 
techniques we adopted and also show the design of the proposed CNN 
model. Meanwhile, we first attempt to give an overview of the complete 

Table 1 
A summary of some recent state-of-the-art CNN-based studies aimed at charac-
terizing abnormalities in breast images.  

Authors 
and 
Reference 

Year Data Sources 
(Number of 
images) 

Technique/ 
classifier 

Classes Classification 
accuracy/ 
performance 

Jadoon 
et al. 
[63] 

2017 IRMA (2796 
images) 

CNN-DW and 
CNN-CT with 
augmented 
data set 
/SVM and 
Softmax 
classifiers 

2 and 
3 

81.83 % and 
83.74 % 
accuracy 

Qiu et al., 
[47] 

2017 Private (560 
images) 

CNN/MLP/ 
Logistic 
regression 
classifier 

2 AUC = 0.790 

Ribli 
et al., 
[65] 

2018 INbreast (115 
FFDM cases 
images) 
Private 
dataset 
(847vFFDM 
images), and 
DDSM (2620 
images) 

Faster R- 
CNN 

3 AUC = 0.95 

Shen 
et al., 
[66] 

2019 CBIS-DDSM 
(2478) and 
INbreast 
(115) 

CNN/MLP/ 
Softmax 

5 AUC = 0.98, 
sensitivity: 
86.7 %, 
specificity: 
96.1 %  
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learning model proposed in this study. 

3.1. Overview of methodology 

The following are the procedures which outline the overview of our 
approach:  

a Images are collected from selected databases (MIAS, INbreast and 
DDSM).  

b Image preprocessing/data preparation and cleanings using CLAHE. 
To enhance the internal structures, Contrast-Limited Adaptive His-
togram Equalization (CLAHE) was applied, followed by a mean filter 
of kernel 3 × 3.  

c Data/image generation using the traditional data augmentation 
technique.  

d Apply some forms of standard data augmentation technique on a 
batch of the acquired datasets.  

e Split all the datasets into training, validation and testing sets.  
f Apply our proposed deep learning model (in sub-section 3.5) on the 

datasets.  
g Evaluate the performance of the two learning models 

In Fig. 1, the illustration of the overview of the approach used in this 
paper is presented, as outlined above. 

3.2. Mammography dataset 

In CADx-based CNN models which use digital mammograms for 
input, most of the databases that are publicly available and widely used 
are the Mammographic Image Analysis Society (MIAS) database [57] 
and the Digital Database for Screening Mammography (DDSM) [10]. 
Similar datasets are the INbreast database, Breast Cancer Digital Re-
pository (BCDR), and Image Retrieval in Medical Applications (IRMA). 
In this paper, we combine the datasets in the DDSM, MIAS and INbreast 
databases for experimental purposes. The INbreast database has 115 
cases that resulted in 410 images (90 cases with both breasts - 4 images 
per-person affected, and another 25 cases of mastectomy - 2 images 
per-person) which consist of abnormalities such as architectural 
distortion [58]. Meanwhile, MIAS database has 332 images collected 
from 161 different cases, and DDSM has its images extracted from 2620 
cases, each case having two images, resulting in 10,480 images. Table 2 
presents the details of the datasets used in this research. We decided to 
acquire FFDM and FSM images to enhance the detection rate and to 

Fig. 1. Block diagram of the proposed CADx system which consists of image/data preprocessing task, traditional data augmentation, and the CNN model (CAPITAL I 
IN INPUTS). 

Table 2 
Description of popular benchmarked datasets used for experimentation.  

Database No. of 
Patients 

No. of 
Images 

Cases of 
abnormalities 

Description 

MIAS 161 322 (MLO 
view of 
images) 

All forms of 
abnormalities (32 
show architectural 
distortion) 

Digitised to 50- 
micron pixel edge, 
and reduced to 200- 
micron pixel edge 
and padded/clipped 
so that all the 
images are 
1024 × 1024. 
Images include 
radiologist’s truth- 
markings. 

DDSM 2620 

10,480 
(MLO and 
CC view of 
images) 

All forms of 
abnormalities 
(about 137 show 
architectural 
distortion) 

The database has 
some associated 
patient information 
(like age at time of 
study) and image 
information (like 
spatial resolution). 
Images are marked 
with ground truth 
information about 
the locations and 
types of suspicious 
regions. 

INbreast 115 410 

All kinds of 
abnormalities 
(architectural 
distortion 
approximately 8%) 

Image matrix is 
3328 × 4048 or 
2560 × 3328 pixels. 

Total 11,212    

Table 3 
Description of datasets used for experimentation.   

Dataset Total no. of samples/ 
ROIs 

No. of samples/ 
ROIs with 
abnormalities 

Benchmark 
Dataset 

DDSM + CBIS- 
DDSM 

The dataset contains 
55,890 of which 14 % are 
positive and the 
remaining 86 % negative 

7824 

MIAS 5136 ROIs 536 
MIAS whole 
images 322 whole images 115 

INbreast 410 whole images 349  
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lower the number of false detections [14]. 
In Table 3, we give more detailed information about the datasets 

used for the experimentation. We concentrate on the details of the 
number of ROIs extracted both manually and using an automated 
method. Also, we give information about the statistics of the occurrence 
of the four different forms of abnormalities observable in mammograms. 
Meanwhile, our dataset information will be categorized into those ob-
tained from benchmarked databases and the synthesized datasets. The 
DDSM and CBIS-DDSM datasets have already been preprocessed and 
converted to 299 × 299 images by extracting the ROIs. The MIAS 
datasets were also preprocessed into its ROI forms of sizes 299 × 299. 
We experimented with the INbreast dataset [58] using the whole images 

of sizes 2560 × 3328, and whole MIAS images of sizes 1024 × 1024. We 
first preprocessed the images by converting them from the DICOM for-
mats into PNG files which yielded 420 images. Table 3 summarizes the 
description of samples/ROIs from each of the databases and even the 
synthesized one. Our MIAS and DDSM + CBS ROI datasets were pre-
processed into Numpy files and TFrecords. The Numpy files are much 
more convenient to use in training than CSVfiles. The whole images 
(MIAS and INbreast) are in PNG forms. 

3.3. Image preprocessing 

Image preprocessing stage of this research implies the removal of 

Fig. 2. The proposed CNN architecture showing the input, blocks of convolution, max-pooling, fully connected layers and a three-class classifier: Layered-based 
architecture of the proposed CNN model. 

Table 4 
A detailed representation of each layer of the proposed CNN architecture showing the following: input, output, filter size and number, activation, weights, and number 
of parameters. Note that convo represents a short form of convolutional layer.  

Layer Input (w x h) Output (w x h x k) Filter Size (n x m) No. filters (k) Memory Weights (n*m)*k Activation 

Input layer 220 × 220 220 × 220 × 1 – – 48,400 ~ 48K – – 
Zero Padding Padding = (3,3)  
Convo1_1 220 × 220 224 × 224 × 32 3 × 3 32 1,548,800 ~ 1.5M 320 Relu 
Convo1_2 224 × 224 224 × 224 × 32 3 × 3 32 1,605,632 ~ 1.6M 9248 Relu 
Zero Padding Padding = (1,1) 
Max Pooling Pool size = (2,2), Strides = (1,1)         

Convo2_1 223 × 223 223 × 223 × 64 1 × 1 64 3,182,656 ~ 3.1M 2112 Relu 
Convolutional layer 2_2 223 × 223 223 × 223 × 64 3 × 3 64 3,182,656 ~ 3.1M 36,864 Relu 
Zero Padding Padding = (1,1) 
Max Pooling Pool size = (3,3), Strides = (2,2) 
Convolutional layer 3_1 111 × 111 111 × 111 × 128 3 × 3 128 1,577,088 ~ 1.5M 73,856 Relu 
Convolutional layer 3_2 111 × 111 111 × 111 × 128 3 × 3 128 1,577,088 ~ 1.5M 147,584 Relu 
Zero Padding Padding = (1,1) 
Max Pooling Pool size = (2,2), Strides = (1,1) 
Convolutional layer 4_1 110 × 110 110 × 110 × 256 1 × 1 256 6,364,600 ~ 6.3M 33,024 Relu 
Convolutional layer 4_2 110 × 110 110 × 110 × 256 3 × 3 256 6,364,600 ~ 6.3M 590,080 Relu 
Zero Padding Padding = (1,1) 
Max Pooling Pool size = (3,3), Strides = (2,2) 
Convolutional layer 5_1 54 × 54 52 × 52 × 512 3 × 3 512 1,492,992 ~ 1.4M 1,180,160 Relu 
Convolutional layer 5_2 52 × 52 52 × 52 × 512 3 × 3 512 1,492,992 ~ 1.4M 2,359,808 Relu 
Zero Padding Padding = (1,1) 
Max Pooling Pool size = (2,2), Strides = (1,1) 
Convolutional layer 6_1 51 × 51 51 × 51 × 1024 1 × 1 1024 2,663,424 ~ 2.6M 525,312 Relu 
Convolutional layer 6_2 51 × 51 51 × 51 × 1024 3 × 3 1024 2,663,424 ~ 2.6M 9,438,208 Relu 
Zero Padding Padding = (1,1) 
Max Pooling Pool size = (3,3), Strides = (2,2), output = 25 × 25 
Avg. Pooling Pool size = (2,2), Strides = (1,1), output = 24 × 24 
Flatten 576 single column 
Dropout layer Rate = 0.5 
Dense layer Number_of_classes = 24, L2(0.0002) 
SoftMax (output layer 24  
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noise, breast image contrast enhancement, and image breast segmen-
tation to remove background area, labels, artefacts, and pectoral muscle. 
This paper uses a variant of adaptive histogram equalization (AHE), 
called contrast limited adaptive histogram equalization (CLAHE), to 
improve the contrast in images. In addition, we use a median filter for 
denoising, and un-sharp mask to smoothen the images. 

3.4. Cropping of images 

We obtained cropped images containing ROIs of size 299 × 299 
pixels. The ROIs used by our method were of fixed size (ROIs of size 
299 × 299 pixels were selected both from MIAS and DDSM). Meanwhile, 
we investigated the possibility of feeding in a multi-sized image into our 
model. To accomplish this task, we used images of size 1024 × 1024 
pixels for MIAS and of size 2560 × 3328 pixels for INbreast, although the 
result was not encouraging. 

3.5. The proposed deep learning architecture 

In CNN, the design of the network architecture largely depends on 
appropriate choice of model parameters/hyperparameters and condi-
tions like the requirement of the model, the size of the dataset, depth of 
the architecture, more layers (extract more features, increases accuracy 
when sufficient training datasets exists), and considerable size of 
training data. In addition, Minavathi et al. [60] observed that, with deep 
learning models, using step decay rate while reducing learning rate by 
some percentage after a set number of training epochs increases the 
performance of characterization of abnormalities in mammograms. 

We first served ROIs images into the CNN model, and after that 
experimented with whole mammograms. Our first attempt was aimed at 
reducing the computational time required for extracting features and 
also to eliminate loss resulting from the down-sampling whole 
mammogram. We chose a 3 × 3 filter size because smaller filters collect 
as much local information as possible; bigger filters represent more 
global, high-level information. Our decision on this was reinforced by 
the common knowledge of the subtle nature in detecting architectural 
distortion from digital mammograms. 

The architecture described in Fig. 2 above assumes the form of Conv- 
Conv-Pool-Conv-Conv-Pool with a number of filters modeled as 32(3, 
relu)–32(3, relu)-2(2)-64(3, relu)–64(3, relu) and so on. The main model 
is captured in Fig. 2. 

We provide a detailed representation of the proposed CNN model 
shown in Fig. 2 by summarizing all important parameters in Table 4 
below. The proposed architecture applied the strides of 1; bias of 1 and 
the value same for the padding parameters across convolutional layers. 
Also, the proposed architecture used kernel regularizer (L2) with a value 
of 2*10− 4 across convolutional layers. We computed the number of 
parameters for the convolutional layers using Eq. 1: 

convoParams = (((n ∗ m) ∗ stride + 1 ) ∗ filters) (1) 

where n*m = kernel size. Similarly, we compute the output of each 
layer using Eq. 2: 

layerOutput =
((

(w − n + 2P)
s

+ 1) ∗ (
(h − m + 2P)

s
+ 1)

)

∗ k (2)  

where w and h stand for the width and height of the input sample image 
respectively, s stands for the strides, P denotes the zero padding value, 
and k stands for number of filters. The computation of the weights for 
each layer is also achieved using Eq. 3: 

weights = (w ∗ h) ∗ c + b (3)  

where c denotes the number of image depth or channels or depth, and b 
is bias. The output of our pooling layers is derived using Eq. 4 which 
multiplies to 1 (depth) because of the gray-scale images: 

poolLayerOutput =
((

(w − n)
s

+ 1) ∗ (
(h − m)

s
+ 1)

)

∗ 1 (4) 

The proposed CNN model consists of 12 convolutional layers 
alongside pooling and fully connected layers in their respective posi-
tions. The motivation for the selection of this architecture is first moti-
vated from the Google’s architecture, named GoogleNet. We adopted the 
concept of Conv-Conv-Pool-Drop from their architecture. The architec-
ture of the model follows the form of Conv-Conv-Pool-Drop-Conv-Conv- 
BatchNorm-Pool-Drop-Dense(relu)–BatchNorm-Drop, with a number of 
filter modeled as 32(3, relu)–32(3, relu)-2(2)-64(3, relu)–64(3, relu) and 
we applied a normalization technique (layer), namely local response 
normalization (LRN), after each block of convolutional layer. 

The optimization algorithm applied to the proposed model was the 
Adam optimizer, and the learning rate was 0.001. The proposed CNN 
model benefits from some deep learning regularization techniques 
which have demonstrated capacity to combat overfitting issue. Over-
fitting is the situation when a model learns the training data excellently 
but falls short of generalizing well when some other data is exposed to it. 
Regularization techniques such as L2 and L1, dropout, data augmenta-
tion, and early stopping have been widely reported to enhance the 
performance of deep learning models [92,93]. This study, therefore, 
experimented with some of the techniques to ensure an optimal per-
formance of the proposed deep learning (CNN) model. Hence, we do not 
just hope to improve performance but also to enable our model to 
generalize well. A model failing to generalize well will show validation 
error increases while the training error steadily decreases. In this study, 
we applied our work to the most common regularization technique L2 
which is also referred to as “weight decay”. We aimed at applying this 
weight regularization technique to reduce overfitting. L2 values range 
between 0 and 0.1 with examples as 0.1, 0.001, 0.0001, and are in 
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logarithmic scale. We therefore hope to reduce our model’s training 
error by applying this technique. 

3.6. Algorithm of the combined model for data augmentation and 
classification 

Algorithm 1 combines the procedures outlined in Fig. 1. The algo-
rithm accepts one out of the datasets in Table 2; it then performs all 
necessary preprocessing tasks on the datasets. Some of these functions 
are: data preprocessing (as described in Section 3.3), generating addi-
tional images using data augmentation (as described in Sections 3.1 and 
4.1 A), splitting of the dataset into three sets (training, evaluation and 
trusting), and finally applying the proposed CNN model on the dataset 
before classification is done using SoftMax classifier (multiclass classi-
fication applied here). 

The complexity of Algorithm 1 evaluated to O(n). This was derived 
from line 2 is (O(n)), line 3 is (O(n)), line 4 is (O(n)), lines 5, 7, 8, 9, and 
12 each have 1, and lines 10 and 11 are approximated to have 
complexity of O(n). Following the rules of summing (addition rule) each 
of them, we arrive at O(n) for Algorithm 1. 

4. Computational experiments 

4.1. Experimentation setup 

Experimentation of the proposed deep learning model was imple-
mented using Keras with Google’s Tensorflow as backend. We trained 
our model on Floyd server [61] using the following configurations: a 
High-Performance GPU with Tesla V100, 16 GB Memory, 61 GB RAM, 
and 100 GB SSD; also, we deployed our model for training on a Standard 
GPU with Tesla K80, 12 GB Memory, 61 GB RAM, and 100 GB SSD. 
Meanwhile, we attempted to observe the variations of performance 
when our model is trained using a CPU only-based system, hence, we 
likewise trained our model on a system with a Standard CPU, Intel Xeon 
2 Cores, having 8 GB RAM 100 GB SSD; and also on another configu-
ration of High-Performance CPU, Intel Xeon with 8 Cores, 32 GB RAM 
and 100 GB SSD. 

4.2. Image augmentation and training configuration 

A brief description of how images (particularly the highly insuffi-
cient images with architectural distortion) are augmented based on the 
current proposed model adaptation and the parameters settings for 
training the new model are elaborated in this section. 

4.2.1. Data augmentation 
We adopted the standard or what is known as the traditional data 

augmentation procedure on all the categories of datasets used in the 
study. Table 5 summarizes the choice of features we applied to the 
original images to generate or synthesise new data for the training 
process. The augmentation parameters listed in Table 5 were applied to 
each of the datasets used in training the proposed model. The outcome of 
the application of the augmentation described in Table 5 is listed in 
Table 6. 

In Fig. 3, we illustrate samples of images in their varicose categori-
zation based on the dataset and their usage (training, validation and 
testing purposes). We generated augmented images for the category of 
our dataset using the parameters listed in Table 5. The outcome of our 
augmentation operation is shown in Fig. 5. Base on the data augmen-
tation operation applied as detailed in Table 5. 

4.2.1.1. MIAS dataset. In Fig. 3a, we show some samples (ROIs) of the 
real image from the MIAS dataset of sizes 299 × 299 which we used for 
training, testing and validating our model. 

4.2.1.2. DDSM + CBS dataset. Samples of real images collected from 
the DDSM + CBS dataset for training and validation purposes were also 
applied to our model. 

4.2.1.3. MIAS whole image (1024 × 1024) dataset. We experimented 
our model with whole mammogram images to observe its performance. 
The MIAS whole images of sizes 1024 × 1024 were used, and their 
corresponding augmented versions generated. These are shown in 
Fig. 3b. 

4.2.1.4. INbreast whole image (2560 × 3328) dataset. This dataset was 
first converted to PNG formats from its original DICOM formats, then we 
produced augmented version before serving into our model as input. 

Table 5 
Data augmentation parameters.  

Parameters Description Training dataset Validation dataset Testing dataset 

zca_whitening apply ZCA whitening False False False 
rotation_range randomly rotate images in the range (degrees, 0–180) 20 20 10 
width_shift_range randomly shift images horizontally (fraction of total width) 0.2 0. 0. 
shear_range set range for random shear 0.15 0. 0. 
channel_shift_range set range for random channel shifts 0 0 0 
height_shift_range randomly shift images vertically (fraction of total height) 0.2 0. 0. 
zca_epsilon epsilon for ZCA whitening 1e-06 1e-06 1e-06 
horizontal_flip randomly flip images True True True 
vertical_flip randomly flip images True True True 
Rescale set rescaling factor (applied before any other transformation) None None None 
fill_mode set mode for filling points outside the input boundaries Nearest nearest nearest 
zoom_range fraction of images reserved for validation (strictly between 0 and 1) 0.15 0. 0. 
data_format # image data format, either "channels_first" or "channels_last" channels_first channels_first channels_first 
CLACHE parameters 
adaptive_equalization  True True True 
contrast_stretching  True True True 
histogram_equalization  True True True  

Table 6 
Total samples/ROIs generated in each category of the dataset.   

Dataset Total no. of samples/ROIs 
synthesized 

Synthesized 
Dataset 

DDSM + CBIS- 
DDSM 

179,447 ROIs 

MIAS (ROIs) 49,724 ROIs 
MIAS whole image 7914 whole images 
INbreast 1688 whole images  
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4.2.2. Training parameters 
Table 7 summarizes the parameters and hyperparameters used in 

training our model on the different datasets presented earlier. 

5. Results and discussion 

In this section, we present the results of our experiment and also 
compare the performance of the proposed CNN model with similar 
existing models in the literature. 

5.1. MIAS dataset (299 × 299) 

The loss value and accuracy obtained while training our model with 
the MIAS dataset revealed that the model performs well in detecting 
architectural distortion in breast patches presented to it. Training the 
proposed model without applying augmentation technique resulted in 
an accuracy of 84.30 % as the loss continued to drop progressively 
during training. Fig. 4 present the pattern of change in accuracy and loss 
during training and evaluation. 

The results in Fig. 4 above show that as the loss value decreases, our 
model achieves an incremental inaccuracy. Applying the proposed 
model to data augmentation technique operations (horizontal and ver-
tical flip, shift range, shear range and zoom range) during training and 
evaluation as shown in Fig. 5 produced a better result compared to the 
earlier approach. The result confirms the argument that performance 
improvement is attainable when applying data augmentation to the 
deep learning model. The result shows that we obtained an accuracy of 
93.75 % at the loss value of 0.29. 

Although our model performed well when applied to the MIAS 
datasets, however a further improvement of the current model using 
image augmentation technique yielded some performance gain. This 
assertion is drawn from results illustrated in Fig. 5. Furthermore, to 
investigate the performance of the proposed model on different data 
augmentation operations, we varied the process by adding and 
removing operations. This allowed the study to present an optimal 
combination of operations necessary for applying the augmentation 
method to CNN models. This is informed from the understanding that 
our proposed model tends to learn features that are unaffected by their 
positioning in the input, hence the liberty to transform images into 

Fig. 3. (a): Samples of MIAS 299 × 299 real images used for training, training, and testing. (b): A sample of real MIAS(1024 × 1024) image with architectural 
distortion, and two samples of augmented MIAS(1024 × 1024) image. 

Table 7 
List of parameters and hyperparameters used during training.   

Parameters & Hyperparameters 

Used under real 
and 
synthesized 
datasets 

Kernels 

Kernel size:3 × 3 
number of kernels: 64 
Activation function: ReLU 
Stride = 1 
Padding = 1 

Weights Number of weights, 
Activation function = SoftMax 

Callbacks learning rate: 0.001 
Early stopping 
[monitor=’val_loss’, 
patience = 2] 

beta_1 = 0.9, 

Checkpointing 
[monitor=’val_loss’, 
mode=’auto’, period = 1] 

beta_2 = 0.999, 

epsilon = 1e-8 

Optimerzer: Adam loss = categorical_crossentropy  

Fig. 4. Pattern of change in loss function and accuracy of training and evaluation MIAS dataset.  
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different forms using augmentation technique. To do so, images were 
randomly selected from each batch and were transformed as follows:  

i Vertical and horizontal flip, rotation at 90 degrees, width shift range 
of 50 %, and results are shown in Fig. 6.  

ii Vertical flip, rotation at 180 degrees, height shift range of 50 %, 
application of ZCA whitening, validation split 0.25, the zoom range 
of 50 %, width shift range, and results are shown in Fig. 7.  

iii Horizontal flip; rotation at 270 degrees; both width and height shift 
range of 50 %, application of ZCA whitening, validation split of 0.15, 
and results are shown in Fig. 8. 

The performances of the three different scenarios of augmentation 
parameters defined in items (i)-(iii) above show that the proposed model 

performed better under the case described by item (ii). The case 
described in option (ii) demonstrates a unique combination of 
augmentation operations on the input dataset. 

5.2. DDSM + CBS Dataset (299 × 299) 

The proposed model also yielded an excellent performance using the 
DDSM dataset. It was observed that the accuracy and loss value of the 
model under this dataset improved with data augmentation just like the 
MIAS dataset. Although the performance of the model was lower than 
what was obtained with the MIAS datasets, it was, however, discovered 
that the model was effective. Results obtained show an accuracy of 
87.38 % and loss values of 0.58 in training phase while the accuracy of 
86.80 % with loss value of 0.60 was achieved during evaluation. These 

Fig. 5. Pattern of change in loss function and accuracy of training and evaluation MIAS dataset with data augmentation.  

Fig. 6. Accuracy and loss of training and evaluating MIAS dataset with data augmentation defined in item (i).  

Fig. 7. Accuracy and loss of training and evaluating MIAS dataset with data augmentation defined in item (ii).  
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Fig. 8. Accuracy and loss of training and evaluating MIAS dataset with data augmentation defined in item (iii).  

Fig. 9. Pattern of change in loss function and accuracy of training and evaluation when the proposed model is applied to DDSM + CBS dataset.  

Fig. 10. Pattern of change in loss function and accuracy of training and evaluation when the proposed model with data augmentation is applied to 
DDSM + CBS dataset. 

Fig. 11. Accuracy and loss of training and evaluating MIAS dataset with data augmentation defined in item (i).  
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are captured in Fig. 9. 
Similarly, the proposed model revealed that when data augmenta-

tion was applied to the DDSM + CBS dataset, it was able to improve its 
accuracy and decrease its lost value, as shown in Fig. 10. Using data 
augmentation technique, the model yielded 89.50 % and 87.50 % during 
training and evaluation respectively, while the loss values changed from 

0.68 to 0.49 from training to evaluation. 
This study also investigated the effect of varying transformation 

operations on the DDSM + CBS dataset, which is shown as follows:  

i Vertical and horizontal flip, zoom range of 0.50 rotations at 180 
degrees, and results are shown in Fig. 11. 

Fig. 12. Pattern of change in loss function and accuracy of training and evaluation MIAS whole image dataset (1024 × 1024) dataset with data augmentation.  

Fig. 13. Pattern of change in accuracy of training and loss function INbreast whole image dataset (2560 × 3328) dataset with data augmentation.  

Fig. 14. Pattern of change in accuracy and loss function of MIAS whole image dataset (1024 × 1024) using a CNN model with higher depth than the one proposed in 
this study, that is, besides the use of data augmentation. 
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5.3. Performance on whole/large images 

We discovered that our model performs well when the input sizes of 
datasets are served as small patches (preferable 299 × 299) rather than 
whole images (larger than 512 × 512). This was established based on the 
experimentation carried out on our model using the MIAS and INbreast 
whole mammogram image datasets. 

5.3.1. MIAS whole image dataset (1024 × 1024) 
We served our proposed model with samples of 1024 × 1024 sized 

whole MIAS images and found the accuracy to have dropped sharply 
from expectations. The accuracy of 64.29 % and loss value of 5.9789, as 
shown in Fig. 12, revealed that our model appears to be too shallow for 
all the features of the images to be learned. We acknowledge that both 
the experimentation on MIAS whole image dataset (1024 × 1024) and 
INbreast whole image dataset (2560 × 3328) were performed even with 
data augmentation operation yet we obtained a reduced performance 
compared to those previously reported in the sections above. 

5.3.2. INbreast whole image dataset (2560 × 3328) 
Similarly, the model does not appear to appreciate in performance 

under the INbreast 2560 × 3328 dataset. This dataset also under- 
performed compared to the small-sized samples as it yielded 
maximum accuracy and loss values of 64.29 % and 1.5298, respectively, 
as shown in Fig. 13. We were interested in investigating why the per-
formance of the sets of datasets dropped so much to those low values of 
accuracies, and why the loss values were so high. 

We experimented with a deeper model by increasing the depth of our 
model to unravel the reason for the sharp drop in performance. That 
investigation did not yield any better performance, as shown in Fig. 14 
for MIAS whole images and Fig. 15 for INbreast whole images. 

In summary, we present the best performance obtained by the 

proposed model in Table 8 both in the data augmentation cases and non- 
augmentation cases. 

Furthermore, we attempted to compare the performance of our 
model in detecting architectural distortion in mammograms with similar 
researches which might have used the same dataset. The result of the 

Fig. 15. Pattern of change in accuracy and loss function of INbreast whole image dataset (2560 × 3328) using a CNN model with higher depth than the one proposed 
in this study, in addition to the use of data augmentation. 

Table 8 
Proposed architectural distortion-based CNN with data augmentation.  

Model Description Dataset Accuracy 

Proposed CNN model MIAS 299 × 299 dataset 93.75 % 
DDSM + CBS dataset 87.50 % 

Proposed CNN model + data 
augmentation 

MIAS 299 × 299 dataset 93.75 % 
DDSM + CBS dataset 90.62 % 
INbreast dataset 
2560 × 3328 64.29 % 

MIAS 1024 × 1024 64.29 %  

Table 9 
Comparative analysis of the proposed architectural distortion CNN with popular 
CNN architectures.  

CNN Number of 
Weights 

Batch 
Size 

Learning 
Rate (FT, 
SC) 

Best Model 
Iterations (Fine 
Tuning, from 
scratch) 

Proposed 
CNN model 

668,837 32 0.001 8, 20 

GoogLeNet 10,299,840 32 10− 5, 10− 5 12, 12 
AlexNet 56,866,848 32 10− 5, 10− 5 665 
ResNet-50 23,512,128 32 10− 5, 10-4 4104 
VGG-16 134,256,320 32 10− 5, 10− 5 9, 58  

Table 10 
Comparing the contributions and performances of similar approaches.  

Authors Contribution Dataset Accuracy 

Proposal Deep learning 
architecture for effective 
detection of architectural 
distortion using data 
augmentation 

DDSM + CBIS, INbreast, 
and MIAS 

93.75 % 

Abbas 
[62] 

DeepCAD: multilayer 
deep-learning architecture 

600 ROI: masses 300, 
benign300 

91.5% 

Ragab 
et al. 
[59] 

DCNN: AlexNet. DDSM and CBIS-DDSM; 
Data Augmentation: 
rotation 

73.6 %, Fine-tuned to classify two 
classes instead of 1000 
classes 

Hang 
et al. 
[46] 

GlimpseNet DDSM 66.2 % 

Jadoon 
et al. 
[63] 

CNN-DW and CNN-CT 
with augmented data set 

IRMA (DDSM and MIAS) 
and Lawrence Livermore 
National Laboratory 
(LLNL) and Rheinisch 
Westfälische Technische 
Hochschule (RWTH) 

83.74 %  
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comparison is listed in Tables 9 and 10. We discovered that our model 
yielded outstanding performance in comparison with other similar 
approaches. 

In Table 11, we make a comparative analysis of some popular ar-
chitecture with our proposed model using the well-known CBIS-DDSM 
dataset. We felt it necessary to present the performance evaluation over 
similar architectures using the same dataset. This will present an unbi-
ased evaluation of the achievement obtained in this paper. Performance 
comparison based on accuracy with other major architectures revealed 
that we obtained 87.29 % accuracy, which translates to 21.69 % accu-
racy improvement over the optimal architecture (AlexNet). 

In Fig. 16 (a) and (b), we graphically analyse the performance of our 
proposed model in comparison with other state-of-the-art CNN models 
for architectural distortion and generic CNN architectures. 

Although similar learning models tend to train over a large number 
of epochs with the hope attaining a desirable accuracy, we, however, 
discovered that the number of epochs is not as significant as the vali-
dation and training error. Our approach in this study was to keep watch 
on our training and validation error; as long as it keeps dropping training 

should continue until it stabilizes. For instance, if the training/valida-
tion error starts increasing, that might be an indication of overfitting. 
We, therefore, attempted our training with a number of epochs as high 
as possible and terminated training based on the error rates in addition 
to using an early stopping call back. 

We understand that designing an optimal and performance efficient 
CNN model which can accept variable sized inputs (especially large 
images) requires some artistic work rather than the scientific method. 
However, we decided to subject our proposed model to both small-sized 
(299 × 299) input and large-sized inputs (1024 × 1024 and 
2560 × 3328) to study, investigate and report performance of the model. 
This will help researchers understand the intricacy and challenges of 
such a method. Our position on this approach was, therefore, drawn 
from practical experience learnt from this study. Although we do not 
claim that such models are unrealistic, however some compromise may 
be attained with learning model depth and computational cost. 

6. Conclusion 

Characterization of abnormalities in mammograms for the purpose 
of detection of malignant breast tissue has generated significant interest 
in deep learning research. Although more study and state-of-the-art 
performances have been achieved in the detection of micro-
calcifications and masses, only a few efforts are directed to the detection 
of architectural distortion. The negligence of study in the detection of 
architectural distortion is largely due to its subtle nature which presents 
it as irrelevant and rarely occurring in breast images. However, we 
observed that detection of this abnormality enhances early revealing of 
breast cancer. In this paper, we proposed a novel deep learning archi-
tecture with Conv-Conv-Pool layering style and aimed at effectively 
detecting the existence of architectural distortion in mammograms. We 
have improved the performance of our model by augmenting the data 
using standard augmentation technique. The proposed model 
strengthens the conventional claims that data augmentation enhances 
the performance of learning models when applied in a novel way. In 
addition, we applied our proposed model on several benchmarked 
datasets to obtain an interesting result. The result obtained showed that 
our proposed model outperforms similar models adapted to the task of 
detection and classification of architectural distortion from digital 
breast images. Moreover, this study demonstrates rigorous experimen-
tation with benchmark datasets by investigating and reporting their 
performances when applied to the proposed model. Finally, an 
outstanding output of this study is the careful selection of data argu-
mentation parameters using the traditional approach. All these dem-
onstrates an interesting performance of the proposed approach in this 
study. In future, we plan to apply GAN-based image generation 
approach as a replacement to our augmentation technique. This is 
intended to boost the performance of the proposed model further. Be-
sides this, we plan to work around the proposed model by deepening it 
and adjusting necessary parameters to provide support for whole (im-
ages) mammograms like those from INbreast dataset. 
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Table 11 
Comparing the performances of accuracies of popular architectures with our 
proposed model based on CBIS-DDSM dataset.  

Architectures Accuracy based on CBIS-DDSM dataset 

Proposed architecture 87.29 % 
GoogLeNet 59.80 % 
AlexNet 65.60 % 
ResNet-50 62.70% 
VGG-16 58.00%  

Fig. 16. A representation of graphical comparison of the proposed CNN model/ 
architecture with (a) similar models characterizing architectural distortion in 
digital images and (b) state-of-the-art architectures, both in terms of accuracy. 
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Appendix A. Computational Performance of the 
Experimentation Resources 

A Computational resource usage metrics 

For each of the jobs we executed in the training mode, we observed 
the CPU and GPU performance of each job and captured them to 
demonstrate resource utilization in the computational environment. For 
example, the GPU or CPU Memory utilization metric might indicate 
whether we can increase or decrease the batch size of our jobs to ensure 
that we are fully utilizing your GPU/CPU. It can also help debug failed 
jobs due to out-of-memory (OOM) errors. We received CPU utilization 
which showed the percentage of CPU usage; memory utilization which 
showed the percentage of RAM usage; and disk utilization which showed 
the percentage of SSD usage. Additionally, for the jobs we executed on 
GPU-powered configurations, we received GPU utilization which 
showed the percentage of GPU usage by the training job; and GPU 
memory utilization which showed the percentage GPU Memory by the 
training job. Fig. 1 below describe the metrics of these computational 
resources with respect to our jobs. 

Fig. A1–A5 
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